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Compensation of Random and Systematic Timing
Errors in Sampling Oscilloscopes
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Abstract—In this paper, a method of correcting both random
and systematic timebase errors using measurements of only two
quadrature sinusoids made simultaneously with a waveform of
interest is described. The authors estimate the fundamental limits
to the procedure due to additive noise and sampler jitter and
demonstrate the procedure with some actual measurements.

Index Terms—Comb generator, jitter, sampling oscilloscope,
timebase distortion (TBD), waveform metrology.

I. INTRODUCTION

H IGH-SPEED sampling oscilloscopes suffer from system-
atic timebase distortion (TBD) and random jitter that

cause errors in the time at which samples of a signal are
acquired. We propose an alternative timebase, for use with
equivalent-time sampling oscilloscopes, that greatly reduces
both TBD and jitter, assuming that the sampling times on the
oscilloscope channels are sufficiently synchronized with one
another, that is, assuming that the jitter of all the channels is
sufficiently correlated. The new timebase relies on simultane-
ous measurement of the signal of interest and two reference
sinusoids that are in quadrature and phase locked to the signal
of interest that serve to determine the actual time at which the
measurement was performed [1]. The conventional timebase of
the oscilloscope is used to characterize distortion in the two
reference sinusoids and to determine within which half-cycle of
the auxiliary sinusoids the signal was measured. The new time-
base is estimated from the sinusoids using a weighted “error-
in-variables” approach that accounts for relative contributions
of additive noise and timing error.

Sampling oscilloscopes that have a form of jitter correction
based on quadrature sinusoidal reference signals are described
elsewhere in the literature [2], and sampling oscilloscopes
with similar functionality have recently become commercially
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available.1,2 Our implementation achieves the advantages of
these systems, including a residual jitter of about 200 fs,
correction of time records with nearly arbitrary length, and
application to measurement of signals at almost any frequency.
Furthermore, our method is inexpensive since it can be imple-
mented with an older generation of standard equipment. Our
method corrects for both random jitter and systematic TBD
and provides the user with an estimate of the residual timing
error after the correction process has been applied. Also, our
technique is nonproprietary and is described and characterized
here, for the first time, in the open archival literature.

In an oscilloscope, the timing error at the ith sample, i.e., yi,
is the sum of the systematic TBD hi, and random timing jitter
error τi. Thus, the ith sample of the signal of interest g as a
function of time is given by

yi = g(Ti + hi + τi) + εi (1)

where Ti = (i− 1)Ts is the target time of each sample, Ts

is the target time interval between samples, and εi is the
additive noise. We assume that the jitter and additive noise
are independent zero-mean random variables with variances σ2

τ

and σ2
ε .

The problem of estimating jitter and correcting for its effects
has been addressed by many authors [3]–[7]. The typical ap-
proach is to obtain the signal variance of independent repeated
measurements and use the approximate model [8], i.e.,

var(yi) ≈ σ2
τ (g′(ti))

2 + σ2
ε (2)

to solve for σ2
τ . Here, g′(ti) is the derivative of g(ti) evaluated

at ti = Ti + hi. It is usually assumed that, upon averaging,
the jitter acts as a lowpass filter, so that the average signal is
the convolution of the signal g(ti) and the probability density
function p(·) of the jitter, i.e.,

〈g(ti)〉 =
∫

g(ti − τ)p(τ)dτ. (3)

The effects of jitter are then removed by deconvolution [3].

1Agilent 86107A precision timebase reference module. NIST does not
endorse or guarantee this product. This product is listed here only to reference
similar measurement techniques. Other products may perform as well or better
than those listed here.

2Tektronix 82A04 phase reference module. NIST does not endorse or
guarantee this product. This product is listed here only to reference similar
measurement techniques. Other products may perform as well or better than
those listed here.
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This approach has the following problems.
1) Measurements must be repeated to find the measurement

mean and variance.
2) Estimates of the jitter variance from (2) are generally

biased (for example, see [7]).
3) p(·) must be known.
4) p(·) must be the same over the entire measured waveform.
5) The averaging process removes some of the inherent

bandwidth from the measured signal, making the decon-
volution subjective [9], [10].

6) Deconvolution is an “ill-posed” problem [10], so that in
the presence of noise, there is no unique solution.

Generally, it is desirable to avoid deconvolution, particularly
in cases where the jitter is large, varies over the measure-
ment time window, or has a non-Gaussian probability density.
All these situations make deconvolving the jitter from (3)
problematic.

The problem of estimating TBD has also been studied by
many authors [11]–[18]. Recent work [15]–[18] has used a
nonlinear least squares approach that fits multiple measured
sinusoids with multiple phases and frequencies to a distorted
sinusoid model. This approach performs well at discontinuities
in the TBD and allows simultaneous estimation of the harmonic
distortion, if any, in the measured sinusoids. The distorted
sinusoid model, with harmonic number nh, is given by [16]

yij = αj +
nh∑

k=1

[βjk cos(2πkfjtij) + γjk sin(2πkfjtij)] + εij

(4)

where fj is the fundamental frequency of the jth measured
waveform yij at the ith nominal time, i.e., tij = Ti + hi +
τij . The random jitter is τij , and εij is the random additive
noise. The values of αj , βjk, γjk, and hi can be estimated
by use of a weighted least squares approach [16]. To obtain
a solution using this approach, we typically measure a set of
sinusoidal waveforms at two or three different frequencies.
Each set includes two sinusoids, of a given frequency, that are
approximately in quadrature. Hence, each set can have up to
four or six waveforms for which εij and τij are different for all i
and j. When estimating TBD, we generally average over several
measurement sets to average over different realizations of εij

and τij and reduce the uncertainty due to random jitter and
additive noise. Averaging over several measured waveforms is
also required in the methods described in [16] and [17].

In this paper, however, we are interested in the total timebase
error, i.e., the sum of the TBD and the jitter in an “individual
realization” of a measured waveform. We use all of the infor-
mation in the sinusoid to find the distortion (that is, we estimate
αj , βjk, and γjk) and the timebase (hi and τij) simultaneously,
so that the measured dependent variable (yij) best corresponds
to the values of the distorted reference sinusoids with the new
timebase. In this case, no averaging is involved.

A simple illustration is shown in Fig. 1, which plots uncor-
rected measurements (circles) of a reference sinusoid with an
estimate of the distorted sinusoid (solid curve). Each circle rep-
resents a sample at time ti = Ti + hi + τi, with each τi as a re-
alization of a random process. The estimated sinusoid is found

Fig. 1. Circles show sampled signal using distorted and jittered oscilloscope
timebase, and the solid curve shows the estimated distorted sinusoid. Horizontal
lines show difference between the time estimated from the curve and the
nominal oscilloscope timebase.

Fig. 2. Schematic diagram of generic system used to measure and correct
oscilloscope timebase errors. The reference generator, waveform generator, and
trigger generator are synchronized. Various sources of jitter are labeled as τ (·).

by minimizing the average “distance” between the samples and
the sinusoid. If we assume, for illustrative purposes, that there
is no additive noise, we can estimate the total time error due
to TBD and jitter by drawing a horizontal line between each
measurement (circles) and the distorted sinusoid. The length
of each line represents the difference between the nominal
(oscilloscope) time at which the measurement was taken and
the time as determined by the distorted sinusoidal fit. The time
that each line intersects the distorted sinusoid is the corrected
time for each sample. Once the timebase error is known for
each ti, it can be applied to a simultaneously measured signal of
interest if the timing errors of the simultaneous measurements
are sufficiently correlated. In the next section, we discuss how
this correlation is achieved.

II. SYSTEM FOR MEASURING AND CORRECTING

TIMEBASE ERRORS

Fig. 2 shows a generalized schematic of the signal generator
and sampling system for correcting timebase errors. The ref-
erence oscillator generates a sinusoid with frequency f . The
waveform generator and trigger generator are synchronized to
the reference oscillator. We adjust the delay D, so that the signal
propagation delay between the signal generator and samplers
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1 and 2 is roughly the same as the delay between the signal
generator and sampler 3. This is done to ensure minimal impact
of the signal generator phase noise and maximal correlation
between the reference sine waves and the waveform generator.

We take advantage of the parallel design of many equivalent-
time sampling oscilloscopes. In such an oscilloscope, the
sampling process proceeds as follows [13], [19]: 1) The time-
base is armed to trigger on a rising or falling edge at a certain
level; 2) a pulse with the desired characteristics is sent into the
trigger input, triggering the timebase; 3) the timebase (delay
generator) waits for a predefined time delay; and then, 4) the
timebase generates a drive (strobe) pulse that is split and sent si-
multaneously to all the samplers in the oscilloscope mainframe.
A waveform is sampled by incrementing the time delay by a
nominal increment Ts and repeating the process. A result of the
parallel architecture is that any jitter on the trigger pulse or the
timebase delay generator is common to the sampling time of all
the samplers in the oscilloscope mainframe.

In Fig. 2, we show the sources of jitter, measured relative
to an absolute reference oscillator. They include τ (1) and τ (2),
which are the jitter of the reference signals. We expect that
these have the same statistical properties (mean 0 and standard
deviation σ(1) � σ(2)), although their individual realizations
for the ith sample might differ slightly. The value of τ (3) is
the jitter of the generated waveform we want to measure and
has mean 0 and standard deviation σ(3). The value of τ (tr) is
the jitter of the trigger generator and timebase generator circuit
and has mean 0 and standard deviation σ(tr). We also include
a jitter τ (Sx) (x = 1, 2, 3) for the actual sampling process for
each of the samplers, with mean 0 and standard deviation
σ(S1) � σ(S2) � σ(S3).

When the samplers are simultaneously fired from the same
trigger event, the different jitter components contribute to the
sampled signals as follows:

S1(ti) =S1

(
Ti + hi + τ

(1)
i + τ

(S1)
i + τ

(tr)
i

)

S2(ti) =S2

(
Ti + hi + τ

(2)
i + τ

(S2)
i + τ

(tr)
i

)

S3(ti) =S3

(
Ti + hi + τ

(3)
i + τ

(S3)
i + τ

(tr)
i

)
. (5)

We note that hi and τ
(tr)
i are common to all the simultane-

ously strobed samples. Hence, if σ(tr) � σ(x) and σ(tr) �
σ(Sx) (x = 1, 2, 3), τ (tr)

i is the dominant source of jitter, and we

can approximate τij as τ
(tr)
i . Furthermore, if we can estimate

hi and realizations of τ
(tr)
i from the known sinusoidal signals

S1(ti) and S2(ti), we can apply our estimate to the third
waveform, i.e., S3(ti), and compensate for timing errors in its
measurement.

III. ESTIMATING RANDOM JITTER

Our approach to estimating the timing errors in (4) is to apply
the so-called errors-in-variables [20] or orthogonal distance
regression (ODR) [21] to the model in (4). In this approach, the
distorted sinusoid model is fit to the data with the assumption
that both “dependent” (yi) and “independent” (tij) variables
are subject to errors. Specifically, let yi1 and yi2 be the ith sam-

ples of nearly quadrature sinusoids measured simultaneously
with the signal of interest. Denote the total timing error as δij =
hi + τij , j = 1, 2. Then, δi1 and δi2 are the timing errors of the
two sinusoid measurements. Because the samplers are driven
by a common strobe pulse, as described in the previous section,
we assume equal timing errors in channels 1 and 2. That is,
we assume τi1 = τi2 = τi, and hence, δi = δij = hi + τi and
ti = tij = Ti + δi. We rewrite yij , given in (4), as a function F
of θj = (αj , βj1 . . . βjnh

, γj1 . . . γjnh
) as

yij = F (Ti + δi;θj) + εij .

Estimates of timing errors δi are readily available from
the ODR fit of the model using ODRPACK [21]. Although
other numerical packages may also work for this application,
ODRPACK has been extensively tested, shown to work well,
and is freely available [22]. The ODR procedure obtains the
best fit model for this problem by minimizing the error function

E(θ1,θ2, δ)=
n∑

i=1

{wε

2
(
ε2
i1+ε2

i2

)
+wδδ

2
i

}

=
n∑

i=1

{wε

2

(
[F (Ti+δi;θ1)−yi1]

2

+[F (Ti+δi;θ2)−yi2]
2
)
+wδδ

2
i

}

(6)

with respect to θ1, θ2, and δ = (δ1, . . . , δn) (n is the number
of points in each waveform).

The weights wε and wδ are inversely proportional to the
variances σ2

ε and σ2
δ . That is, wε = 1/σ2

ε and wδ = 1/σ2
δ .

If the TBD is small relative to στ or if an adequate TBD
estimate is available as an initial guess of the timebase error
δi, then σ2

δ ≈ σ2
τ and wδ = 1/σ2

τ . Equivalently, we can use
wε = σ2

τ/σ
2
ε and wδ = 1 in (6). We note that with these weights

and the assumptions that εij (j = 1, 2) and δi are normally
distributed with mean 0 and known variances σ2

ε and σ2
τ , the

least squares estimators of θ1, θ2, and δ are also maximum
likelihood estimators. Further discussions on the use of the
weights are given in the Appendix.

IV. PRACTICAL CONSIDERATIONS

This ODR approach works well for most of the data we
observe in our laboratory and requires only two nearly quadra-
ture sinusoids. There are instances, however, where the ODR
approach produces unsatisfactory results. This is the case when
the waveform is very long, there are only a few samples per
cycle of the sinusoid, or when the TBD is large (compared
with the jitter). In such cases, we use an estimate of the TBD
as an initial guess for the total timebase error to help the
ODR routine converge to a solution. This initial TBD estimate
requires additional measurements of quadrature sinusoids at
different frequencies. These additional measurements need not
be made simultaneously with the signal of interest. Criteria
for frequency selection for the TBD estimate are described in
detail in [15].
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Additive noise on the reference sinusoids can be a source of
error in any timebase error correction. From (2), we see that
the frequency f of the sinusoid g(t) should be chosen such that
σ2

τ (g′(t))2 > σ2
ε over most of the sinusoid. That is, to achieve

good discrimination between jitter and additive noise, the slew
rate must be high enough, so that the jitter becomes the domi-
nant noise process for most of the sinusoid. For our sinusoid, we
require σ2

τ (2πfA)2 > σ2
ε , or 2πfστ > σε/A, where A is the

amplitude of the sine wave. We will discuss this bound further
in the next section.

From the above discussion, we conclude that we want f
as large as possible. However, since we need to discriminate
between half-cycles of the reference sine waves, we also require
that στ 	 1/(2f) to make the probability of shifting a point to
the wrong quarter cycle acceptably small. Combining these lim-
its and rearranging gives us practical bounds for selecting the
frequency of the reference sinusoid: 1/2 � fστ > σε/(2πA).

We can estimate an upper bound for the root-mean-square
(rms) residual timing error (after correction) e∆ due to additive
noise, in the limit of zero jitter, as e∆ = σε/(2πfA). For a
10-GHz sinusoid and (σε/A) = 0.1%, 1%, and 5%, we obtain
e∆ = 0.016, 0.16, and 0.8 ps, respectively.

V. SIMULATION STUDIES

We used simulation to investigate the proposed method for
estimating the timing error and to verify the fundamental limits
imposed by additive noise suggested in the previous section.
The criterion used in the comparisons is the amount of timing
error remaining in a waveform of interest after both random and
systematic timebase errors were corrected using the estimation
procedure.

Recall from (1) that the actual time of the ith sample is
given by

ti = Ti + hi + τi.

With estimates (denoted byˆ) of the TBD ĥi and the realization
of the jitter τ̂i, obtained by the estimation procedure, our
estimate of ti is then given by

t̂i = Ti + ĥi + τ̂i.

The remaining timing errors can be characterized by the sample
standard deviation s∆ of

∆i = ti − t̂i = hi + τi − (ĥi + τ̂i) (7)

where hi and τi are the simulated TBD and jitter used in the
simulation.

We generated sinusoids according to (4) to simulate actual
measurements. The simulation parameters used here, including
TBD, are closely related to those we observe in our laboratory.
We used a time-measurement window (waveform epoch) of
52 ns with 53 248 samples. Since the TBD would be large
for this long time record, we estimated the TBD (using the
method of [16]) and used it as an initial guess for the total time
error. We generated 100 sets of six sinusoids, including pairs
of 0◦ and 90◦ phases at three different frequencies. In addition

TABLE I
AMPLITUDE OF FUNDAMENTAL AND HARMONICS USED

IN THE SIMULATION STUDY

Fig. 3. Sample standard deviation for all 100 simulated data sets for each of
12 different combinations of σε and στ . Individual symbols are not resolved in
this figure.

to estimating the timebase error, we also use the 10-GHz 0◦

sinusoid as the signal of interest, as described in the next
paragraph. Each pair had equal timing error but uncorrelated
additive noise. The signal frequencies and amplitudes are given
in Table I, along with the amplitude of the harmonics (nh = 3).
In each simulation experiment, the additive noise was generated
using a normal distribution with mean 0 and standard deviation
σε. The random jitter was generated using a normal distribution
with mean 0 and standard deviation στ . We also saved the
nominal realization of the random jitter for the purpose of
calculating ∆i and s∆.

Fig. 3 shows s∆ from each of the 100 simulations of the
10-GHz 0◦ sinusoids for each combination of σε = 0.1%,
1.0%, and 5.0% of the fundamental amplitude and στ =
0.1, 1.6, 3.2, and 6.4 ps used in the simulation experiments.
Fig. 3 shows that our procedure is effective for correcting the
timing errors even in the presence of additive noise. Using the
proper weighting for low initial jitter allows us to achieve s∆

that is comparable to or below the simple estimate e∆. In con-
trast, for the case of larger initial jitter, s∆ was approximately
bounded by e∆.

Discussion of some particular cases in Fig. 3 is useful. For
the case of στ = 0.1 ps and σε = 5.0% of the fundamental
amplitude, we have fστ = 0.001 < σε/(2πA) = 0.008, vio-
lating our practical guidelines from Section IV. In this case, our
simulations show that s∆ > στ . For the case of στ = 1.6 ps
and σε = 5.0% of the fundamental amplitude, we have fστ =
0.016, which is about two times larger than σε/(2πA) = 0.008.
In this case, our simulations show s∆ roughly a factor of 2
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Fig. 4. Plot of one of the simulated 52-ns-long 10-GHz 0◦ sinusoids with
(light dots) and without (black dots) correcting timing errors. See text for
explanation.

smaller than στ . Finally, in the case of very small initial additive
noise, our simulations show the sample standard deviation s∆

of the timing errors to be on the order of 0.02 ps. We will show
in Section VI that we cannot achieve such low residual timing
error because the jitter due to the samplers themselves becomes
significant.

We plot one of the simulated 10-GHz 0◦ sinusoids with
and without correcting the timing errors in Fig. 4. The long
waveform (520 periods in our simulated experiments) is shown
as a series of overlapping short waveforms (two periods in
this example), which is similar to an eye pattern. The widely
scattered points are the sinusoid generated with στ = 3.2 ps
and σε = 1% of the amplitude. The overlaying (lightly shaded)
points are the sinusoid after correction for timebase errors. It
can be seen from Fig. 4 that after correction, the errors have
been collapsed to such a small level that they cannot be resolved
on this scale.

We next consider the effects of using the incorrect harmonic
order in the estimation procedure. In general, the harmonic
distortion that is not accounted for will have the same effect
as having an inflated additive noise, with the magnitude of
the effect depending on the magnitude of the distortion that
is not accounted for. As an example, we simulated a signal
with στ = 3.2 ps, σε = 1% of the fundamental amplitude, but
nh = 5, and with the amplitudes of the actual fourth and fifth
harmonics equal to those of the second and third. If we use
only three harmonic terms to correct the timing errors, the mean
value of s∆ (for 100 simulations) is about 1.167 ps, which is a
substantial increase from 0.165 ps (given in Fig. 3). However, if
harmonic distortion in the fourth and fifth is negligible, we do
not see a substantial increase. For example, if the amplitudes of
the fourth harmonic for all three frequencies are all 0.1 mV, and
the amplitudes of the fifth harmonic of the three frequencies are
0.7, 0.7, and 0.1 mV, then the resulting mean value of s∆ is only
0.196 ps. It is therefore necessary to have some knowledge of
the number of harmonics nh, which can be obtained using the
method described in [16].

Weighted least squares procedures [15]–[17] can also be used
in place of the ODR procedure to estimate the timebase error.
We used 100 simulated data sets having σε = 0.1% of the

fundamental amplitude and στ = 1.6 ps to compare the perfor-
mance of the weighted least squares and the ODR procedures.
We first estimated the TBD based on the 100 measurement sets
at all the three frequencies. If we used this TBD estimate as
the final timebase error without further adjustments, the mean
of the 100 s∆ was found to be 1.598 ps, which, as expected,
is in agreement with the initial jitter standard deviation of
1.6 ps. We then used this TBD estimate as the initial time-
base error and employed the weighted least squares [16] on
each of the 100 10-GHz measurements to estimate the final
timebase error. The weight used for yi is the reciprocal of
σ2

ε + (g′(ti))2σ2
τ . The mean of the 100 s∆ was found to be

0.84 ps, which is substantially larger than the mean of the
100 s∆ obtained using the ODR approach (see Fig. 3).

The difference in performance between the weighted least
squares and the ODR approaches may lie in the implementation
of the procedures. The algorithm implemented in the public-
domain software package ODRPACK is an efficient and stable
trust-region procedure [23]. It is more convenient to specify
the model and incorporate the assumption of having common
jitters between the two nearly quadrature sinusoids using the
ODR approach. In addition, the package contains many error-
checking facilities as well as an automatic scaling algorithm
and has been extensively tested.

VI. EXPERIMENTAL STUDIES

In this section, we describe experiments that verify our com-
pensation technique. These are example measurements where
timebase correction is particularly important, including cases
with large jitter or long time windows where TBD can give
significant errors.

A. Experimental Study 1: A Single Sinusoid

We tested the assumption that the trigger and timebase
generator are the dominant sources of jitter (σ(tr) � σ(Sx)),
which is necessary for our method to be useful, by measuring an
“unknown” sinusoid (on sampler 3 of Fig. 2) that was split from
the 10-GHz reference signal generator using a 3-dB splitter. The
other output of the splitter was further split in a hybrid coupler
to provide 0◦ and 90◦ reference signals to samplers 1 and 2
of Fig. 2. The reference signals were provided by the clock
output of a digital pattern generator, and the oscilloscope was
triggered at 1/16 of the clock frequency using the trigger output
of the pattern generator. After measuring 50 sets of these three
sinusoids, we changed the reference frequency to the others
listed in Table I and measured 50 sets of 0◦ and 90◦ sinusoids at
those frequencies as well. Using the jitter estimation software
in the oscilloscope, we estimated the jitter of the uncorrected
measurement to have standard deviation of about 3.3 ps. From
a separate measurement, with no input to samplers 1 and 2,
we found that the rms additive noise was about 0.3% of the
reference signal amplitude.

Because the sinusoid to be corrected and the reference
signals are derived from the same source, we expect that
the jitters τ

(1)
i , τ

(2)
i , and τ

(3)
i of the “unknown” sinusoid

are highly correlated and, therefore, nearly equal. Hence, we
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Fig. 5. Portion of five sinusoids measured on sampler 3 before (bottom) and
after (top) correction for timebase errors. The offset between the curves has
been added for clarity.

expect this experiment to be insensitive to these parameters,
with the remaining jitter being predominantly due to the jitter
τ (Sx) (x = 1, 2, 3) in the samplers.

Because of the long time record used in this experiment, we
estimate the TBD [16] as an initial guess for the ODR routine
using nh = 3 and all three measured frequencies. Fig. 5 shows
a section of five of the 10-GHz sinusoids measured by the third
sampler before (bottom) and after (top) correction for timebase
errors. The uncorrected measurement has a discontinuity at
4 ns due to TBD, and the random noise is large where the slope
is large, indicating significant jitter in the measurement. The
corrected sinusoids have the discontinuity removed and exhibit
noise that is greatly reduced and evenly distributed in time. Note
that the waveforms shown in Fig. 5 have not been averaged.

We cannot use the procedure described in Section IV to
evaluate the residual timing error because, for experimental
data, both hi and τi are unknown. If the waveforms of interest
are known to be sinusoidal, as in this example, we can use the
ODR procedure [21] to obtain an estimate of the residual timing
error after correction. This is obtained from a sum of squares of
the residuals of the ODR fit in the “independent” (tij) variable.
The mean of the sample standard deviations of the residuals
in t̂i obtained from an ODR fit to 50 sinusoids measured in
sampler 3 was found to be 0.2 ps. Thus, our experimental
results show a jitter considerably larger than the numerical
results of Fig. 3. From this, we conclude that the jitter τ (Sx)

of the samplers is not negligible but is still much smaller than
the original jitter in the measurement. We estimated the jitter
of one of the samplers using the estimated numerical limit of
0.021 ps, for our initial jitter and additive noise from Fig. 3, as√

0.22 − 0.0212/
√

2 = 0.14 ps, where we have divided by
√

2
because the jitter is evenly distributed between sampler 3 and
the sampler that is predominantly used as the reference signal
for any given sample. This gives an estimated lower bound to
our timebase correction due to sampler jitter: 0.14

√
2 ≈ 0.2 ps.

Although the sampler jitter is not negligible, it is 23 times
smaller than the initial jitter in this experiment and about a
factor of 6 smaller than the lowest jitter we observe in any
of our laboratory measurements. We conclude that σ(tr) is

Fig. 6. Comparison of raw measurement (black dots), averaged measurement
(noisy gray line), and timebase-corrected and averaged measurement (smooth
light line).

sufficiently large compared with σ(Sx) and therefore expect
reduced timebase error by using our procedure.

B. Experimental Study 2: Fast Transient With Jitter

In some measurement situations, such as those requiring
averaging, (3) shows that jitter will blur details of a fast tran-
sient event, such as the output of a comb generator used for
calibrating various high-speed measurement equipment. In the
context of this paper, measurement of a fast transient allows us
to use (2) to obtain an estimate of the residual jitter, after our
correction, that is independent of the ODR algorithm. As stated
before, jitter estimates made using (2) will have some bias but
have sufficient accuracy for the present purposes.

To generate our fast transient, we used a 6-GHz signal gener-
ator to drive a nonlinear transmission line (NLTL). The NLTL
was configured to steepen the falling edge of the generated si-
nusoid, giving a fast transient with a 6-GHz repetition rate. The
output of the signal generator was split between a countdown
trigger generator used to trigger the oscilloscope, the NLTL,
and a hybrid coupler whose outputs were used as the reference
signals on samplers 1 and 2. The measured transient from
the NLTL (without deconvolution of the oscillscope impulse
response) has roughly a 9-ps fall time.

By changing the trigger level of the oscilloscope, we can
change the rms jitter from about 1.4 ps to more than 8.6 ps (as
measured by the oscilloscope). Additive noise on the reference
signals was about 0.4% of the sinusoid amplitude. Fig. 6 shows
50 measurements of the waveform generated by the NLTL
before averaging (black dots) and after averaging (noisy gray
line) for the case where the rms jitter is 8.6 ps. The light
smooth curve in Fig. 6 is the result of the following correction
and averaging procedure: 1) Each of the 50 waveforms was
corrected for timebase errors; 2) each corrected waveform was
linearly interpolated back to the original evenly spaced time
grid; and 3) the resulting curves were averaged. This estimated
waveform has much less noise but has ripple, ringing, and sharp
features that are blurred in the corresponding average of the
uncorrected measurements.

Fig. 7 shows an expanded view of the waveform after
applying our procedure with three different initial values of
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Fig. 7. Comparison of some corrected and averaged measurements. Measure-
ments with initial jitter of 1.4 and 3.0 ps are indistinguishable on this scale,
whereas the measurement with initial jitter of 8.6 ps shows differences as large
as 1.4 ps at some times.

TABLE II
RESIDUAL JITTER ON MEASURED NLTL WAVEFORM

jitter. Notice that the curves lie nearly on top of each other.
Because the ringing and ripple are accurately represented in
each reconstructed waveform, these features are not artifacts of
the signal processing, as might be expected with some kinds of
regularized noncausal deconvolution [9].

Closer inspection of the curves in Fig. 7 shows systematic
time differences in the curves that increase with initial jitter
but are still substantially less than the initial jitter. The two
lowest jitter curves typically agree to within 100 fs, whereas
the lowest and highest jitter cases differ by as much as 1.1 ps
at some times. This systematic difference between the high and
low jitter cases may be caused by the high noise level of the
high jitter case, which leads to poor estimation of the harmonic
content in the reference signal. It should be noted that 8.6 ps
is on the order of three to ten times larger than the jitter we
observe in typical measurements. Further investigation of this
source of error is beyond the scope of this paper. The calculated
fall times (10%–90% of peak-to-peak transition durations) of
all four cases are indistinguishable.

Because we do not have an analytic expression for the fast
transient, we cannot use the ODR approach to estimate the
residual timing error in its measurement after correction. To
estimate the residual jitter in the transient measurement, we
used (2) on the corrected and linearly interpolated waveforms.
Interpolation to a uniform grid allows us to estimate the vari-
ance and derivative at a given time, as is needed in (2). The
results of our estimate are shown in Table II. We observe
that the results for the experiments with most similar initial
jitter (3.2 ps in sinusoidal experiment and 3.0 ps in NLTL
experiment) are in good agreement; both have 0.2-ps residual
jitter after correction and include the same amount of error from
sampler jitter. Table II also shows that the resulting residual
jitter is only weakly dependent on the initial jitter, as expected
from the simulations in Section IV, and that the algorithm can

improve a high jitter measurement by as much as 34 times (from
8.6 to 0.25 ps).

VII. DEMONSTRATION PROGRAM

Our program for postprocessing acquired waveforms for
timebase correction has a graphical user interface that can
be used in a Microsoft Windows3 environment. The pro-
gram, which is available at http://www.boulder.nist.gov/div815/
HSM_Project/HSMP.htm, contains examples of how the soft-
ware can be used to correct single or multiple measurements.
These examples can be accessed through the program’s help
menu under “Getting Started.” Instructions are also given on
how to call the program from other programs with ActiveX3

capability.
In addition to the TBD and jitter considered in this paper, our

procedure also facilitates some limited correction for timebase
drift. That is, if the initial time of a waveform drifts due to
changes in trigger delay while making multiple measurements
of a waveform, this change in delay is tracked by the phase
of the reference sinusoids. Our software includes an option to
subtract the delay, relative to the first acquired sinusoid. This
procedure does not correct for drift in the measured waveform
that is not correlated with drift in the reference sinusoids. Other
procedures, such as those described in [7], [19], and [24], are
required to correct for drift that is not correlated with the drift
observed in the reference sinusoids.

VIII. CONCLUSION

We have shown how to simultaneously estimate the system-
atic and random timebase errors of measured sinusoidal refer-
ence signals. The parallel (simultaneous) sampling architecture
of the oscilloscope allows us to use this estimate to correct
the timebase errors in a simultaneously measured waveform
by roughly a factor of 10, effectively replacing the timebase
of the oscilloscope with a timebase provided by the measured
sinusoids. We require only that the oscilloscope timebase have
enough accuracy to allow us to discriminate between consec-
utive cycles of the reference signal and that there is sufficient
correlation between the waveform of interest and the reference
sinusoid. This allows us to correct the timing errors that might
be present with long waveforms or large jitter and lowers the
noise floor significantly in most measurements without aver-
aging. In addition to the examples described in this paper, we
have also demonstrated clear reduction of effects due to random
jitter and TBD in measurements of 10-Gb/s data sequences that
are 52 ns (53 248 samples) long and multisine signals that are
500 ns (40 960 samples) long.

APPENDIX

If σ2
τ and σ2

ε are not known or cannot be accurately estimated,
the following procedure may be used to obtain an approximate
estimate of the relative weight σ2

τ/σ
2
ε . The procedure is based

3NIST does not endorse or guarantee this product. This product is listed here
only to provide the reader with information on how to use the software. Other
products may perform in this application as well or better than those listed here.



HALE et al.: COMPENSATION OF RANDOM AND SYSTEMATIC TIMING ERRORS IN SAMPLING OSCILLOSCOPES 2153

on the assumption that an adequate TBD estimate is available
as an initial guess of the timebase error.

The procedure first estimates the timing errors using wε =
w0 = 1 ns2/V2. Let Sδ and Sε be the weighted sums of
squared residuals for δ and ε, respectively, from the ODR fit.
If Sδ ≈ Sε, then the correct weight has been used. Otherwise,
use the new weight wε = w0Sδ/Sε in the next ODR fit. Then,
repeat this process until Sδ ≈ Sε. For example, for the case
where σε = 0.1% of the fundamental and στ = 6.4 ps in the
simulated experiment of Section V, using wε = 1 ns2/V2 in
the ODR fit produces Sδ = 2.124 and Sε = 0.02572 for the
first set of measurements. (For illustration, we only report
the results for the first set of measurements. Results for the
other 99 sets of measurements are very similar.) A new weight
of wε = (2.124)/(0.02572) = 82.58 in the next ODR fit pro-
duces Sδ = 2.173 and Sε = 0.09923. The next weight to use
is wε = (82.58 ns2/V2)(2.173)/(0.09923) = 1808.388, which
produces Sδ = 2.174 and Sε = 2.164. The correct weight for
this problem is 1820.4 ns2/V2. For the case where σε = 5%
of the fundamental and στ = 3.2 ps, one iteration yields a
weight of 0.188 ns2/V2, which is close to the correct weight of
0.182 ns2/V2. For other combinations of σε and στ , it generally
requires one or two iterations to obtain a “close” estimate of the
correct relative weight.
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